

A taste of Supercomputer Reliability Research at Sandia

Red Storm Quarterly Review Oct 25, 2007

Jon Stearley

jrstear@sandia.gov

Scalable Systems Architecture (1422)

Reliability is hard!

System Facts:

- 124.42 teraOPS theoretical peak performance
- 12,960 compute nodes,
 320 + 320 service and I/O nodes
- 40 terabytes of DDR memory
- 340 terabytes of disk storage
- Linux/Catamount Operating Systems
- Approximately 3500 ft2 including disk systems
- <2.5 megawatts of power and cooling
- 3,710 Linux computers used to control this beast
- 14,240 high-speed network interfaces

Hmmm, which wire... is loose?

Mission Critical

+

Many points of failure

+

Complex and dynamic interdependencies

=

Rich research area!

System Logs

Ubiquitous! Informational! Vast! Are:

```
Jul 16 10:00:02 10.1.0.49 local7 info INT DG Data recovered disk:4G address: 889b400 LUN 7, 00000096 DLR:0, DLG:0, DRR:0, DEL:0, DELR:0, DELR:0 T w0 10 fl0 fr2 ea:0,10
Jul 16 10:00:02 10.1.0.49 local7 info INT_DG Data recovered disk:4G address: 889b600 LUN 7,00000097 DLR:0, DLG:0, DRR:0, DEL:0, DELR:0, DELR:0, DERR:0 r1 w0 l0 fl0 fr2 ea:0,10
Jul 16 10:00:02 10.1.0.49 local7 info DMT_EMT_EMT_Verify reassign 1: LUN 7, 00000090 DLR;0, DLG;0, DRR;0, DEL;0, DELR;0, DELR;0 r0 w0 11 fl0 fr2 ea;0,10
Jul 16 10:00:02 10.1.0.49 local7 info DMT_EMT EMT verify reassign 1: LUN 7, 00000091 DLR;0, DLG;0, DRR;0, DEL:0, DELR:0, DERR:0 r0 w0 11 fl0 fr2 ea:0,10
Jul 16 10:00:02 10.1.0.49 local7 info DMT_EMT EMT verify reassign 1: LUN 7,00000092 DLR:0, DLG:0, DRR:0, DEL:0, DELR:0, DERR:0 r0 w0 11 fl0 fr2 ea:0,10
Jul 16 10:00:02 10.1.0.49 local7 info DMT EMT EMT verify reassign 1: LUN 7, 00000093 DLR;0, DLG;0, DRR;0, DEL:0, DELR:0, DERR:0 r0 w0 11 fl0 fr2 ea:0,10
Jul 16 1
           How do you find the few lines of key information among
Jul 16
Jul 16
              thousands of log files and millions of lines of time-stamped text???
Jul 16
Jul 16
Jul 16 10:00:05 10.1.0.49 local7 info INT_DG Data recovered disk:4G address: 2244a00 LUN 6, 00011225 DLR:0, DLG:0, DRR:0, DEL:0, DELR:0, DELR:0, DERR:0 r1 w0 l0 fl0 fr2 ea:0,10
Jul 16 10:00:05 10.1.0.49 local7 info INT_DG Data recovered disk:4G address: 2244c00 LUN 6,00011226 DLR:0, DLG:0, DRR:0, DEL:0, DELR:0, DELR:0, DERR:0 rl w0 l0 fl0 fr2 ea:0,10
Jul 16 10:00:05 10.1.0.49 local7 info INT_DG Data recovered disk:4G address: 2244e00 LUN 6,00011227 DLR:0, DLG:0, DRR:0, DEL:0, DELR:0, DELR:0, DERR:0 rl w0 l0 fl0 fr2 ea:0,10
Jul 16 10:00:05 10.1.0.49 local7 info INT DG Data recovered disk:4G address: 2245000 LUN 6, 00011228 DLR:0, DLG:0, DRR:0, DEL:0, DELR:0, DELR:0, DERR:0 r1 w0 10 fl0 fr2 ea:0.10
Jul 16 10:00:05 10.1.0.49 local7 info INT DG Data recovered disk:4G address: 2245200 LUN 6, 00011229 DLR:0, DLG:0, DRR:0, DEL:0, DELR:0, DELR:0, DERR:0 rl w0 l0 fl0 fr2 ea:0,10
Jul 16 10:00:05 10.1.0.49 local7 info INT_DG Data recovered disk:4G address: 2245400 LUN 6, 0001122a DLR:0, DLG:0, DRR:0, DEL:0, DELR:0, DERR:0 rl w0 l0 fl0 fr2 ea:0,10
Jul 16 10:00:05 10.1.0.49 local7 info DMT_EMT EMT verify reassign 1: LUN 6, 00011223 DLR:0, DLG:0, DRR:0, DEL:0, DELR:0, DELR:0, DERR:0 r0 w0 11 fl0 fr2 ea:0,10
Jul 16 10:00:05 10.1.0.49 local7 info DMT_EMT EMT verify reassign 1: LUN 6, 00011224 DLR:0, DLG:0, DRR:0, DEL:0, DELR:0, DERR:0 r0 w0 11 fl0 fr2 ea:0,10
Jul 16 10:00:05 10.1.0.49 local7 info DMT EMT EMT verify reassign 1; LUN 6, 00011225 DLR;0, DLG;0, DRR;0, DEL;0, DELR;0, DERR;0 r0 w0 11 fl0 fr2 ea;0,10
Jul 16 10:00:05 10.1.0.49 local7 info DMT_EMT_EN
                                                                                                                                     11 fl0 fr2 ea:0.10
Jul 16 10:00:05 10.1.0.49 local7 info DMT_E
                                                                                                                                     11 fl0 fr2 ea:0.10
                                                                             Key Idea:
Jul 16 10:00:05 10.1.0.49 local7 info DMT_E
                                                                                                                                     11 fl0 fr2 ea:0.10
Jul 16 10:00:05 10.1.0.49 local7 info DMT
                                                                                                                                     11 fl0 fr2 ea:0,10
Jul 16 10:00:05 10.1.0.49 local7 info DMT
                                                                                                                                     11 fl0 fr2 ea:0.10
                                                               Similar computers...
Jul 16 10:00:07 10.1.0.49 local7 info INT DO
Jul 16 10:00:07 10.1.0.49 local7 info INT DC
                                                                                                                                     DERR:0 r1 w0 l0 fl0 fr2 ea:0,10
Jul 16 10:00:07 10.1.0.49 local7 info INT DC
                                                                                                                                     DERR:0 r1 w0 l0 fl0 fr2 ea:0,10
Jul 16 10:00:07 10.1.0.49 local7 info INT DC
                                              correctly performing similar work...
Jul 16 10:00:07 10.1.0.49 local7 info INT DO
                                                                                                                                     DERR:0 r1 w0 l0 fl0 fr2 ea:0,10
Jul 16 10:00:07 10.1.0.49 local7 info INT_DO
                                                                                                                                     DERR:0 r1 w0 l0 fl0 fr2 ea:0.10
Jul 16 10:00:07 10.1.0.49 local7 info INT DO
                                                                                                                                     DERR:0 r1 w0 l0 fl0 fr2 ea:0.10
                                                     should produce similar logs.
Jul 16 10:00:07 10.1.0.49 local7 info INT DO
                                                                                                                                     DERR:0 r1 w0 l0 fl0 fr2 ea:0.10
Jul 16 10:00:07 10.1.0.49 local7 info INT_DO
                                                                                                                                     DERR:0 r1 w0 l0 fl0 fr2 ea:0,10
Jul 16 10:00:07 10.1.0.49 local7 info DMT
                                                                                                                                     11 fl0 fr2 ea:0,10
                                                                                                                                     11 fl0 fr2 ea:0,10
Jul 16 10:00:07 10.1.0.49 local7 info DMT_E
Jul 16 10:00:07 10.1.0.49 local7 info DMT E
                                                                                                                                     11 fl0 fr2 ea:0,10
Jul 16 10:00:07 10.1.0.49 local7 info DMT E
                                                                                                                                     11 fl0 fr2 ea:0,10
                                                (Anomalies warrant investigation.)
Jul 16 10:00:07 10.1.0.49 local7 info DMT E
                                                                                                                                     11 fl0 fr2 ea:0.10
Jul 16 10:00:07 10.1.0.49 local7 info DMT_E
                                                                                                                                     11 fl0 fr2 ea:0,10
Jul 16 10:00:07 10.1.0.49 local7 info DMT E
                                                                                                                                     11 fl0 fr2 ea:0,10
Jul 16 10:00:07 10.1.0.49 local7 info DMT EMT EMT verify reassign 1: LUN 6, 00011232 DLR:0, DLG:0, DRR:0, DEL:0, DELR:0, DERR:0 r0
```


Latent Semantic Analysis

- 1. Calculate logfile-logfile similarities (via SVD)
- 2. Cluster (VxOrd)
- 3. Explore themes (VxInsight/Threatview)

Finding Needles in a Craystack

- 1. Which files contain <u>useful</u> information?
- 2. Which words convey <u>useful</u> information?
- 3. Any patterns?

To be Useful,

It Must be Understandable

(to the sysadmins)

1. Which files contain <u>useful</u> information?

2. Which words convey <u>useful</u> information?

2. Which words convey <u>useful</u> information?

3. Are there any patterns?

Time patterns.

113

count median stddev regexp.

57

OUTLIERS

Linewise word patterns via sequencing (Teiresias), clustering (SLCT), and association (Apriori).

```
40
                                100
                                        daemon info llrd 5640 : llrd: nid00192 - - 17/Oct/2007 * "POST /RPC2 HTTP/1.0" 200 -
              20
                                        kern * kernel: * * slow * *
                      301
                               472
                                        kern err kernel: LustreError: * * * *
                      13
                                        kern alert kernel: LustreError: dumping log to *
                                        kern * kernel: * dumping log to *
                      760
                               853
                                        kern * kernel: * * * * *
                      602
                                16
                                        kern warning kernel: SCSI error : <1 0 0 0> return code = 0x20000
              86
                               132
                                        kern warning kernel: end_request: I/O error, dev sde, sector *
                               97
                                        kern warning kernel: Call Trace:{schedule_timeout+243} {process_timeout+0}
              36
                                        kern warning kernel: Call Trace: {:libcfs:libcfs_nid2str+178} {:ost:ost_brw_write+2000}
                      301
                                        kern warning kernel: Call Trace:{:libcfs:libcfs nid2str+178} *
                                        kern warning kernel: Call * {:ost:ost_brw_write+2000}
Oct 17 05:04:06 nid00187 kern crit kernel: LDISKFS-fs
                                                               (device sde2) in ldiskfs_setattr: Readonly filesystem
Oct 17 05:04:12 nid00187 kern warning kernel: SCSI
Oct 17 05:04:12 nid00187 kern warning kernel: end
Oct 17 05:04:12 hiddo187 kern warming kernel: Buffer I/O error on device sde2, logical block 7372802
Oct 17 05:04:12 nid00187 kern warning kernel: lost page write due to I/O error on sde2
Oct 17 05:04:12 nid00187 kern warning kernel: SCSI
Oct 17 05:04:12 nid00187 kern warning kernel: end re
Oct 17 05:04:12 nid00187 kern err kernel: Buffer I/O error on device sde2, logical block 7438338
Oct 17 05:04:12 nid00187 kern warning kernel: lost page write due to I/O error on sde2
Oct 17 05:04:20 nid00187 kern warning kernel: Lustre: 6388:0:(lustre_fsfilt.h:255:fsfilt_commit_wait()) slow journal start 51s
Oct 17 05:04:20 nid00187 kern err kernel: LustreError: 6388:0:(filter_io_26.c:707:filter_commitrw_write()) slow commitrw commit 3511s
Oct 17 05:04:20 nid00187 kern err kernel: LustreError: 6388:0:(filter_io_26.c:707:filter_commitrw_write()) previously skipped 5 similar messages
Oct 17 05:04:20 nid00187 kern err kernel: LustreError: 6388:0:(service.c:583:ptlrpc_server_handle_request()) request 527 opc 4 from U3-1251@ptl processed in 3511s trans 0
Oct 17 05:04:20 nid00187 kern err kernel: LustreError: 6388:0:(service.c:583:ptlrpc_server_handle_request()) previously skipped 7 similar messages
Oct 17 05:04:20 inid00187 kern err kerner. Edstre Error. 0506.5.(watchdog.c:320:lcw_update_time()) Expired w
Oct 17 05:04:20 nid00187 kern warning kernel: Lustre: 6339:0:(watchdog.c:320:lcw_update_time()) E
Oct 17 05:04:20 nid00187 kern warning kernel: Lustre: 6388:0:(watchdog.c:320:lcw_update_time()) previous
```


Production Impacts

Sisyphus has found a wide range of problems:

Failures:

Disks and controllers

Network interfaces

Power supplies

Memory

Misconfigurations:

Performance-decreasing BIOS setting

Overhead-increasing RAID controller setting

Inconsistent software versions across nodes

Faulty software configuration

Problematic user behavior:

Unbalanced disk RAID stripe usage

Inappropriate remote monitoring

Which has enabled focused reactive and proactive responses.

See http://www.cs.sandia.gov/sisyphus for more info.

"Establish Quantitative Measurement of Effectiveness"

33 Unsupervised Classifiers Tested!

NWCC/Spirit Data 512 Nodes, 23 Days 8.3M log messages 36K terms, 243K docs 3.9K emails! P=62; 802 N=243K

True Class:

Alarm P TP Class: N FN

P N
TP FP
FN TN

TP=True Positives **FP**=False Positives **FN**=False Negatives **TN**=True Negatives

Metrics:

Alarm Precision = TP/(TP+FP) Event Detection = TP/(TP+FN)

RAS Metrics

RAS = Reliability, Availability, Serviceability

Good science is measurable!

But...

NO STANDARD is currently used for measuring supercomputer RAS!!!

RAS Metrics: Challenges

Difficult to agree on:

- How to define failure (or interrupt).
- How to measure reliability.
- The need and method to change the processes and procedures involved.

03/01/07 - 09/24/07 (ticks on Sundays)

RAS Metrics: Plans

The Tri-laboratory Linux Compute Cluster presents a fantastic RAS metrics opportunity:

- Same vendor
- Same hardware
- Same system software

Our FY08 goal is to produce a specification and reference implementation for TLCC RAS metrics.

Key Idea:

track **OPERATIONAL CONTEXT** for every node, at all times

Tri-lab-developed Component State Diagram (Based on SEMI-E10)

Each component is in exactly one non-grey state at all times.

Summary

Supercomputer RAS is a rich research area.

Sandia is making significant contributions.

Applications, Operating systems, I/O systems, System architectures, Device control, Networking, Metrics, and Detection and prediction on logs and real-valued data.

(I have given you only a taste)

Standard RAS metrics are essential.

For improved RAS research, engineering, and operation.